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PART 1

The final report under Contract NASw-907 consists of three papers
(GA-6007, GA-5891, GA-612L4) which have been submitted for publication.
These papers comprise Parts 2-l, respectively. In this part we summarize
the conclusions arrived at in these reports. Finally, Part 5 lists the
activities pursued by the program personnel during the last four months
of the contract period.

In Part 2 we examine the stability of the Van Allen belt to spon-
taneous interchange instabilities and conclude that with a reasonable
choice of parameters the belt is conclusively stable during the day;
however, with nighttime ionospheric parameters the radiation belt is
on the border of instability and we conjecture that the distribution of
particles in the belt may be limited by the nighttime ionospheric
parameters ,

In Part 3 we examine the effect of resonant particle — Whistler
and Alfven wave interaction, a magnetic moment violating process. We
show that this process is an effective dumping mechanism; in addition,
those particles which survive are left in a flat helix distribution.

Finally, in Part L4 we look at an exact solution of the "Universal"
instability in the drift approximation and demonstrate that the usual
results obtained from a local treatment of the differential equation
is consistent with the exact dispersion relation provided the standard
conditions are satisfied, viz., the density varies slowly enough so that

a WKB treatment is valid.
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PART 2
ON THE INTERCHANGE STABILITY OF THE VAN ALLEN BELT
BY

D. B. Chang, L. D, Pearlstein, and M. N. Rosenbluth¥*

This is a preprint of a paper submitted by the suthors
for publication in the Journal of Geophysical Research.
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ABSTRACT I 14 O

The interchange stability of the Van £llen belt is studied in
the electrostatic approximation. The destabilizing currents are
obtained from the description or tne variuicle motion developed by
Northrup and Teller (1960) when the megnetic moment and bounce
actions are invariant. The stabilizing currents are described by
the three fluid (electirons, ions and neutrals) zero temperature
dielectric tensor discucsed by Fejer (1960). For frequencies of
the order of the azimuthal drift periods of the energetic particles
in the belt, the stabilizing currents arise primarily from the
ionosphere. With a recsonable choice of belt parameters, the
energetic particles appear to be guite stuble agazinst interchanges
for the electron dencities which obtain in the ionosphere during

the daytime, but are near marginal stability for nighttime ionospheric

densities. . f}»~*iﬁ



I.  LITRODPUCTION

"he possible importance of large-scale motions in the magneto-
sphere of the earth in which the plasmas in tubes of egqual flux are
interchanged, hus been discussed by Gold (1959, 1962), Axford «nd
Hines (1961) and Sonnerup and Laird (1953). These authors have
investigated the change of the potential energy of the system due
to an interchange of t7o neighboring tubes of force, and have found
that under come circumstances the energy of the placma trected as a
simple fluid decreases. They point out that if these energetically
allowable interchanges occur, a major mechanism will resuit for the
redistribution of energetic charged particles in the magneto-
sphere.

In the following we study the dynamics of the interchanges
further to see if energetically allowable ones can actually occur
spontaneou-ly. In Section II, the normal moue equation for
electrostetic interchanges is obtained. There the destabilizirg
currents are obtained from the description of the particle motion
developed by Northrup and Teller (1960) when the magnetic moment
and bounce action: sre invariant, while the stabilizing currents
are described by a zero temperature three fluid (electrons, ions
and neutrals) dielectric tensor which has been discussed in detail
by Fejer (1960). In Section III the significance of the results for

the radiation belt is discussed.



Lt

ITI. DISPERSION FORMULA FOR INTERCHANGES

A dispersion formula for permissible motions is obtained on
combining Mexwell's equations with the equations governing the
particle motions, requiring that the electromagnetic fields are such
that in the particle equations they induce currentsand charge densi-
ties which in Maxwell's equations are consistent with the fields. 1In
order for an interchange motion to result in a net change in the
distribution of the energetic radiation belt particles, the motion
must violate one or more of the three adiabatic invariants of these
particles. In the following we shall consider motions which have
time scales longer than the longitudinal mirroring times but possibly
less than the azimuthal drift times of the energetic particles.

The third (or azimuthal) adiabatic invariant is therefore possibly
violated while the first Larmor and second (mirror) adiatatic
invariant are not violated. The particle drift motions in the
earth's field under these circumstances have been discussed in
detail by Northrup and Teller (1960), and we shall use their equa-
tions to describe the motion of the high-energy particles. {imilar
equations have been used in discussing the energetics of "minimum
B" confinement schemes in the work on controlled fusion

(J. B. Taylor - 1963).
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i. Particle VWotion

Horthrup and Teller start with the invariance of the quantity
2
H =P /meB (1)

and the guiding center equations of motion

o . -pd8, 2.3
dt 7 s Te b (2)
- b - 11) c p|2 dg

= = o N 4 LI 2
Ya T3 X ( -cE + 7e VB + re m as ) (2)

which result after an everage of the equation of motion of a
particle of chanse e has been taken over the rapid gyration around
a field line. Here B and ﬁ are the magnetic and electric fields,

P4 andé p;, are the components of the particles' relativistic momentum
5 perpendicular and parallel to 3’mo is the rest mass; ¥ equals the
total mass divicded by mb; B is the unit vector g/B along the line

of force, ¢ is the distance along the line of force, u. is the

d
drift velocity which moves the guiding center to a neighboring line,

¢ is the speed of 1light, and t denotes the time. By averaging
the guiding center equations of motion over the longitudinal
oscillation between mirroring points, they then find on using the
invariance of . the cecond invariant

J=#N& (1)

and the following eguations describing the average behavior in a

mirror period:



o
=

&)= =285 (@ B, I, u, t) (5)
=< Z (6)
W)= 5 (7
1=ﬁ%. (8)

In ejyuation (4), the integral is taken over a complete oscillation
of period T along the line. 1In equations (5) - (8), the variables
¢ gnd B which have been introduced are such that the vector
potential K is given by

A = QVB; (9)

B= Vo x VB (10)
znd makes 2zdp equal to the flux through a surface element. The
guantity ¢ is defined by

K= (3% +n e + (g + ) (11)
where @ is the electroztatic potentisl and

y=22£ (12)
in equations (5) - (8), the defining relations of eguations (1) and
(k) must be used to eliminate p,, and p, from equation (11), so that
K is exwpresced =s a function of ¢, B, J, u and t. In these

equations, (), (B) and (K) denote the average time rates of change

of «, B and ¥ euperienced by a particle during a mirror osciliation.

Denoting by F(u, J, o, B, t) dudJdodp the number of particles

in the interval du at u, dJ at J, dx at ¢, and dB at B at time t,



and forming & continuity equation for #(u, J, &, B, t) with 4 anc J

invarisnt:.,

SRR . d .
< ¢ -§ [<a>F] + 35 = 0, (1)

Horthrup znc Teller then point out that F satisfies a Licuville equa-

tion

-—%[Ei‘ﬂa—“}w (1h)

writh %K (cz, 3, 3, u, t) playing the role of the Hamiltonian. Finally,

- 3
denoting by f(u, J, %, t) SudJ ¢x the number of particles in the

2

volume element d% at » at time t, this distribution function is

related to the disztribution function F for the line passing through

-

¥ by

£ = (2B/VT)T, (15)
~here the fzoctor B comes from the Jacobian relating the cross
cectionzl srex of & tube of flux zt % to arzdB, and E/VHT comes from
the fact thst the fraction of time spent by a2 particle in an

element ds of the line of force iz simply

s /w}g ds  2dz
“ i Y "y b
v V v,

where Vu = P‘;moy is the varticle's longitudinal velocity.

|



ii. Dispersion Relation

In & vlasme where the particle motions are describec by the pre-
cecing equations, we mey obtain a dispersion relation for electro-
magnetic disturbances with time scales longer than the mirror periods
of the particles by forming current and charge densities from
equations (5) - (15) and inserting these in Maxwell's eguations.

Jith B = VoxvB, the equation

v.B=0 (16)

is automatically satisfied, and with

- 13 - .
E=-ve- 22 (avp), (17)
the Maxwell equation
= _ 3B ‘,
ViE = - & (13)

iz automatically satisfied.

In terms of ¢, B and ¢, we then have for

ot . 1l 3 g

VXB-LHTJ ¢ 3t 64)

the equation
. LY
13 [=2 12 % ge) = b, g
VX (VoxvB) + TR | (aVB)J * 5 3¢ (e.92) = hnj; (19)
anc¢ for
= -

V-(¢.E) = bmp,

e have

v.(e.ve) + v

%%‘E (?.ave)] = -bmp. (=0)



)
In eguations (19) and (20), p and j are the charge density and
current censity, recpectively, and are given in terms of the

f of equation (15) by

p(x,t) = Ee[[d“dJ flp, Jy, X5 t) | (21)
- -y - -
j(x,t) = ZeffdudJ flu, J, X, t) ug + VXM . (22)

The sum is over particle species, UxM iz the magnetication

current obtained from

=1

=% || cudd £(u,d,%,t) (), (23)
J! ;

Ed is the drift velocity of equation (3), 7 is the ratio of the

mass to the rest mass, and both ﬁd and 7 are expressed in terms

of &,a, B, uy J, ¢ and t. In equation (23) the factor 7'1 is
required since relativistically the magnetic moment is not invarient
but is equal to the invariant p multiplied by 7-1.

The cdielectric tensor : which occurs in the foregoing is
included to describe all other relevant currents besides those
resulting from the magnetic moment of equation (1) and the lowest
order guiding center motions of equations (2) and (3). Since we
are interested in freguencies of the order of the azimuthal drift
frequencies of the energetic particles in = fielcd configuration
vhere the radius of curvature is of the order of the =zize of the
system, it may be verified that the higher order finite Larmor
radius corrections to the guiding center motions are not important
[Rosenbluth, Krall, Rostoker (l962ﬂ .  For the present problem,

then, the dielectric tensor needs only include polariz:tion and



resiztive currents.

The discussion of interchange instability corresponds 4o an
approximate solution of the foregoing equations for perturbations
about equilibria where the plasma energy density is much smaller than
the magnetic energy density. #With only a relatively much smaller
particle energy density availeble to create a change in the magnetic
field energy, it might be expected that the fastest growing instabili-
ties in these cases would be ones in which the magnetic field remsins
nractically unperturbed. We are then led to consider the approxima-
tion in which the perturbed elegtric field is derived completely from
the scalar potential ¢. In this approximation the dispersion rela-
tion is obtained from Poisson's equation,

v.(c.v8) = -bmp, (2k)
where agein the charge density p(X,t) is given by equation (21), and
where here we shall regard no electric field to exist in equilibrium.

Consider now the features of the interchange instability des-
cribed¢ by equation (25) for perturbations zbout an azimuthally
symmetric equilibrium in which the magnetic field has no azimuthal
component. At any point in the field introduce a coordinate system
cefined by the orthogonal unit vectors {E&, EB’ i;}, where ?Xis in
the direction of the equilibrium megnetic field § at the point,

YB is the azimuthal direction sbout the axis of symmetry of the
system, and Ea = EB X 3; is perpendicular to the field and lies
along the racdius of curvature of the field line. The length of a

c¢ifferential line element @zlis therefore given by
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(a0)° = (ax,)® + (axy)® + (ax )° (26)
where dﬁz is the projection of the differential element along
3&, de is the projection along TB, and ds is the projection along
the field line. In terms of a cylindrical coordinate system (,9,z)
chosen so that the z-axis lies along the axis of symmetry of the

system, we may write

de =230 . (27)

For this cylindrically symmetric system the o and B of equations (9)
and (10) may be introduced by setting

dor = B/dea

ap = de,
and¢ for V*ﬁkO, we may set B equal to the gradient of the magnetic

scalar potential y,

KX,

B =

Hquation (26) may then be written

~ P 2
() = =z ()« F(a)? (8 (262)
Br B

and all equations involving the gradient operator V may be

a2
expressed in terms of %—, %5, and I by inspection.

w X
Poisson's equation becomes
- 2
v-[e-w = o = -k B | duds (F)F, (25a)
I

where the second equality results on using equations (15) and (21).

Since the particles can move very readily along the magnetic field
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lines to cancel out any electric fields paraliel 'to 3, we may set

3% :
i 0 (28)

in equation (252). We show in the appendix tnat this is an equally
valid assumption in the ionosphere. With ¢, @ and B constant along a

line, it is then reasonable to divide equation (25a) by B and integrate

fds .
over s (i.e., integrate equation (25a) over x). Since T =0 %E’ this
operation yields -

fv -[‘é-v&]%E = -8rze f,fdudJF. (29)
Jo
On Fourier analyzing the perturbed quantities,
_ i (me+at )
Q(a,g) - m;.:g:?:.n ]ﬂ(a) €
© i(mo+wt)
F(u,J,a,B) = FO(H:J)G) +m=§m Fm(“’J:O‘) e ( » (30)
and linearizing equation (29), we have:
g ds
j{V- [e.VQm}-ﬁ— = -8nfe dp.dJFm . (31)
To determine anthe linearized form of the Fourier-analyzed
Liouville equation of equation (14) is needed:
; oF
. cm 9K _ 1S o)
1w, + 2 o) 7 = 1In K=, (32)
where from equations (4) and (11) with ¢ = O, the K and K of
i(m9+a)mt)
K(Qt, B, Jypst) = Ko(a:J:lJ-) +m§_me(a,J,u)e (33)

are to be determined from

N b
J =‘f’%§[(K-e§)2 - mozc - 2uBmocg] . (34)
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Since $is zero in equilibrium, and B is undisturbed in the perturba-

tion, the differential of equation (34) gives for K,

f_d_-g KO(Km-eQm) - o
c 2 24 21« T 7
[K o "My © -2uBmoc ]

i.e.,
Km(a,J,p.) = e%a) . (35)
5imilarly, in the equilibrium state, equation (34) reads
ds 2 24 2l &
J=}'é—— [Ko-moc -eumoc}%, (36)
and (a,u,J ) may be determined from this by differentiating with

respect to o holding p and J fixed, i.e.,

) ( BKo |J.m 02 BB) +
f [K - EuBm c ]} o3 °
j{-?ﬁ(ds) 1 [KOE - m02 % _ ouBn zcl‘J * _o. (37)
(o4

Since -fa is perpendicular to —ﬁ, and since VXB ~ O for this case
in which the magnetic energy density is much larger than the partial

energy density, we have

B(s,a,B)ds(s,,B) = B(s,a + x,B)ds(s,a + a,B)

from which it follows that

8B 4. (38)

)
=) =" 5w

Wi
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Equations (37) and (38) give

-1

_BL(o _ f Kodsh % f ds
[ o 2 2 2
c [KB -m ¢ - 2umec ]

[K 2 m ech - uBmocz]

Wi
g%

. (39)
c[Ko - mO cl‘L - Ep.Bmoce]i

This may be expressed in more familiar terms by recognizing that the

parallel and gyration velocities in the equilibrium state are simply

I R (ko)
(o]
2uB # ,
vy = (25) (42)
m07

2 - -
since X =m 7¢” and p = m 7V; in terms of equations (40)and (41),

equation (39) may be rewritten

aKo ds ,1 3B 2 2L 2l 1
= (fV” f-\;_“_- (E 5) [KO - mo ¢ - “’Bmoc ] ——KO
v 2
ds 1 3B ]
) (fVu fVu B aa) M7 (V” * 'é_ ) (392)

Inserting equations (35) and (39a) into equation (32), we have
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cm@ B_Fo
. m X -
F o= . (k2)
m ds \7' (ds L1 B 2 vy § ‘
. cm . s (1 v )
c%+?(fmn fw\%gz%,Wn *2)

To proceed further with equation (31), the fprm of the dielectric
tensor must be specified. The belt parameters suggest that at the
frequencies of interest the polarization and resistive currents are
provided primarily by very low energy particles (Cf. Section III).
Fejer (1960) has discussed,in connection with the ionosphere, the
dielectric tensor which obtains from a zero temperature three fluid

(electrons, ions and neutrels) plausma, and we shall use his results

for the polarization and resistive currents 3 + 3 !
pol res
(B-B)E
L. og(EE)E (7. G0 B3
I —— F - - ] e 3
dpol ¥ Jres Z T oy 5 17 9% (3)
B B
where
ne® m -1
= —_ LR * S, el
% m (Dl * e) 1% +o* "W e)
e i
nég Te m g%
op =m - O tamw) 8y - g ) 5 (ks )
e i
nelC Mo 1 m
- £ . - I e Ly — .
02 me (Jl * mi e) D l(ﬁi& PR + o * M LOe)]

Here the subscripts (i, e, 0) refer to (ions, electrons and neutrals),

and
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i
p
o} o)
* oy L (15)
vr=p b — p. v - 45
o} 1w+ El-v. + Pe v
Po Po ¢

2 2y, 2 2 X e
D= (m& - )(me - Q ) - 2iv (ma + E; wé)(wgbe - Qine)

- u*e(w, + fﬂ w )2
i m e
with v denoting ﬁhe collision frequency between ions and electrons,
vy denoting the collision frequency of ions with neutrals, R the
collision frequency of electrons with neutrals, p the mass density,
n the electron number density and Qi and Qe the ion and electron
gyrofrequencies.

For frequencies of the order of the azimuthal drift frequencies
of the energetic protons in the belt, it can be shown that the
motion of the neutrals may be ignored (w >> pivi/po), and that in
the ionogphere w and v may be ignored compared to uj Francis and
Karplus (1960)}. In the ionosphere, then, we shall approximate

GO, gy and o, by

2
o] s:;ne2 Py 1
0] m,v,
J J
2 Yy \
o, mmne” I 5 (4iua)
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In the belt itself, with Qj S>> W >> p >> vj we have

o De
0 " m iw
e
iw
o) & - 2 ) Op & 0. (4ib)
e
14)“,,‘ne2 + T
pi pe
lmc2

L >
With ¢ = 1 + == o, insertion of equations (42) and (L43) in

equation (31) then yields the normal mode equation

bng i kno
d | 2 1 | 3% 2 ¢ ds_ 1
fdsB-E-a (1 + T )Eam -[m}) E(l"' T )
Br
3 MHOém
+§ds BSE(—B'—D——-) §m=—8‘ﬂ<§m %/]dud]’
aFp
ecm <=
X S0 = (86)
da -1 | d 1 3B 2 .V
I e iB e
1

= -7n(rE)Qm ”

It is useful to express the integral on the right-hand side of
equation (46) in terms of a more familiar distribution function. In
the following, we shall restrict our attention to a dipole field of

magnetic moment ﬁ:

5 = MCOSQ , ()4_7)
r



17

denoting the polar angle by © and the distances from ﬁ by r.
Hamlin, Karplus, Vik and Watson (1961) have shown that the
denominator £ in the integral on the right-hand side of equation

(46) may be approximated by the simple expression

m3cr E? -m '?c)1L

S (—5=—) (0-35 + 0.15 simy}) (48)

Daw -

1
B and rE

are the helix angle and distance of the particle from ﬁ when it

where E is the relativistic énergy of the particles and «

crosses the equator © = n/2. A convenient equilibrium distribution
m '

B 2° O

the nurher of particles in the volume dV, equatorial heli: angle

function to introduce is then f_(r E) dVda}'sdE, this denoting

interv..i daé and energy interval dE at the equatorial distznce X

and energy E. Denoting by fo(r,O; a', E) dVéa'dE

E
the number of particles in the interval dVda'dE at a general point

helix angle o

in the field r,® (ignoring the azimuthal coordinate $ since the
equilibrium distribution is assumed independent of §), Liouville's

theorem and the constancy of the magnetic moment then g”

2. \1/4
1l + 3 cos @ r ™ -
fo(r,Q, E, a') = 3 3 ) fo e © 205 2
sin-® sin @
- .3 . '
aé = sin 1l |sin-9@ Slg Otl/h ) (}49)
(1+3 cos“8)
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The differential volume of a tube of flux dadB contained in the

differential angle do is
L
'E 7
av = TH dodpf sin €49, (50)

where To is the distance of the tube from M at the equator. Thus,

since an interval dudJ is uniquely determined by an interval &Q%dE

at a given rE, we have:

i

'E 7 oay
f(u,J,q,B)dudd = [ do —~ sin’e fo(r, o, E, a') = do (51)

where fo(r, @, E, a) is given by equation (49) and where because

fad 2 1
”ig @ ys invariant,
]
da' - (l + 3 Cosag)l/h- cos E ? (52)
do', . 3 2.\ :
E sin”g P__ (L + 3 cos“®) sinea'1
R E
sin ©
A particularly simple choice for fo(rE, g; a'E, E) is
£ (r., % a'_,E) = N(r,, E) sin® o' (53)
oV'E 2 T F E’ E’
for then
3(p-1) p
. . .
£ (r,0,a',E) = N(ry = 1 — , p) 8208 sing (54)

’ -
E sin% (1+3 cos®e )Bui



and
Qr;
Fu, J,05B) dudd = —= N(ry, &) singzﬁ cos af
n/2
e e (1 26)F
3 : + w
é9 sin g c%s ) - 4o’ a8
(L + 3 cos™@9)® .2,
5 1 - G gin aE
c sin” ©
where
6
sin ®
< = cinza'
s g

(L + 3 cosgec)é )

When equation (53) applies, then, we hzve with dudJ proportional
L

to rE 3
2,
dpdJd - e =
1 3B 2 v
B+ — Eﬁ WI _%.V‘ ( ) mY (v =+ —g;
er . (a )
B A " .. D VQ
—:E dE -B_I‘E N(rE,h) da'E sin a' cos OC'E .grm
where
e
2 I\
| sin @ (1 + =
‘*(Q'E) = as ( 3 COZ Q%f .
) (1 - (+ 3cos” 9) sin® a},

2 sin- 9

19

(55)

(56)

(57)

(58)



20

and [ defined by Eqg.

(18).

iii Discussion

In analyzing equations (46) and (57) further, it is well to keep
in mind some specific features of the Van Allen belt and the iono-
sphere. 1In the radiation belt, whistler measurements and particle
detection experimentcs indicate the presence of a plasma the bulk of
which is of low energy anc of which only a smell fraction comprises
the high energy (radiation) component. Thus, referring to O'Brien
(1964) for a summary of the high energy date, the energetic proton
spectrum is described* by the empirical relation of MecIlwain and
Pizella (1963)

-5 /KT
j(Ep) dF = constant e © dg,

-(5.2 £ 0.2)
kT = (306 £ 28)L Mev for 1.7 sL < B,

where j(gp) denotes the intensity of protons of energy Ep and -L

is the magnetic shell parameter introduced by McIlwain (1961).

A typical flux of protons in the 1.1-14 Mev range at L ~ 2 might be 3X
lO6 sec“1 cm_e ster-lﬁmllwain,et al (1964}The energetic electron
spectra 1is summarized by O'Brien in the form of two graphs, one

for the inner and the other for the heart of the outer zone: the

inner zone graph indicating a relatively flat flux spectrum extending

*. Although recent measurements [McIlwain et.al. (l96hﬂ indicate
that this relation may not always apply.
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from ~ 50 kev up to ~ 500-600 kev with a flux of «alol'L electrons/

kev cm? ster. sec, and the outer zone graph showing a typical intensity
of ~lOS electrons/cm2 sec kev dropping off quite abruptly between lO3
and lOu kev. Referring to Liemohn and Scarf (1964) for a summary of

the low energy electron data obtained from whistlers, the low energy

electron density N(r,®) is described by functions of the form

N(r,O) = I‘—3 G(T:G):

where r and © denote radial distance and geomagnetic latitude,
respectively, and G(r,®) is a smooth function of r and @ in the
range 3 < r;Rp <5 (RE is the earth's radius). One such function

for equatorial densities is
3 2
N = 14100 (RE/r) electrons/cm”,

(as given in their figure 6). Liemohn and Scarf attribute the
whistler damping to non-thermal electrons of energies in the range
0.2-2 kev in the tail of the energy distribution. Although they
conclude that a temperature for the distribution cannot be estimated
from whistler data, it would appear that the bulk of the electrons
have much lower energy; e.g., an earlier analysis (scarf, 1962,

5OK. From

Liemohn and Scarf, 1962) showed a temperature of 2 x10
the foregoing, then, we are led to consider a radiation belt plasma
in which the number of low energy electrons and ions is much larger

than the number of high energy electrons and ions, but in which the
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total energy associated with the high energy component is much
larger than that of the low energy component.

For ionospheric data, reference may be made to the review
article by Van Zandt and Knecht (1964) and to the article on
hydromagnetic waves in the ionosphere by Francis and Karplus (1960).

Here we find that o, and o, are sharply peaked functions of r

1 2
whose widths and heights are proportional and inversely proportional

to Qi’ respectively. If all terms in oy and o, except Qi are

assumed independent of r_,, an approximation which neglects the

E
dependence of the ionosphere upon latitude--we have already neglected
longitudinal variations by the assumption of cylindrical symmetry,
and if it is further noted that the positions of the peaks are a

and o

slow function of rE, we can make the approximation that oy >

are independent of r_ and write

E
2
P _SE
7] ~ Ar 6(r-rl) = hﬂNlb(r-rl)
20 )
i
2
Tpi Iy
~ 0, Ar 6(r—r2) = ﬂN26(r-r2)
Y™

(59)

where, from Francis and Kerplus (1960) and Van 4andt and Knecht (1964),

, . A6 T e - . v oA - e

Ar ~ 5 x 107 cm, rl Q;RE + 150 km, fg,w R, + 120 km, &t which heiguts
e

3 - -
the ionospheric elcctron density n ~ 2 X 105(5 x 10”) em 3 during the
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day (night). In the foilowing, we shall set r., r2 = RE. As represen-
L
tative parameters, we nave at 120 km above the earth's surface, a neutral
. =] - 11 "3 L] KR . = LY 6
density of 6 x 107 cm -, ar electron (ion) gyrofrequency of 8 x 10
(2 x lO ) and a collision frequency with neutrals of 8 x 103 (3 x 10° )
3
=4 s . N .=
see © for electrons (ions). Taese frequencies are considerably larger

than the azimuthal drift frequencies of the er:-getic radiaticn belt

particles. Tne distributions amployed are

: ) e-E/kTg
Ng(rg,E) =2 =
/ ) )
b =
ol n, -B/sT, . [Rg 3
N (rg,E) = 1-1%5 _(;,E:Fﬁe L\/—%- N (61)

p=21
vherein the latter form occurs since both electrons and ions are Maxwel-
iized due to the large number of coilisions as far as containment is con-
cerned. Also note tnat the average energy of the ions 1s considerably
greater than the average energy of the electrons for the high energy
component. Next, the angular integrations in Eq. (57) are performed.
To do this it is convenient to interchange the order of the integration
over @ and aﬁ. Further, the non-relativistic approximation is utiiized
to evaluateacr(a%) in addition we replace the Qﬁ dependencelin this
latter expression by its average value (a valid procedure since .35
dominates .15 sin @, i.e., we write 0.35 + 0.15 sin oy ~ 1/2. We then

obtain (see Egs. 46 and 57)
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— 16me ,mec dNY

Wiry) = ) —d— e far B

ik FAN ME E arE

4, p=1,3 J

/2 o

1 /f (sinQ)LHp 3P =3
X « 5

3mEry, ) ie‘é (1+3cos“0) E’T]: 1, p=1

or 32me ,mcr6 f

W = ) E Jal
”‘\(rE) Z e CE

=8

: 3 J
n -E/kT 3k -E/.KT
{ L, — e L ?E ——iH— }4 = . (52)

?(n3/ 2 (kTL)*/ - 'R \/ *Tl‘aJ ukrpe
: eJM

w - - ie

The sign of ¢ is chosen in the standord Landau sense, Now if we defline

the dimensionlec:s quantities

p weM e
S =% = FET cry - L
p TL - e TL
E*H = -—5 S EH T e g

T T

H H

~r

-4

d
()

L2k /2
W(r - _%_‘3371; Tm dx X 2.7nL .RE 1. 711 RE.
VB N V x n3; 2 %1 \E gﬁ-x ,/11 K 1'

L £

We next turn to an analysis of stapility. Since tihe time dependence
. . o vt ; ; e o
is proportional to e it need only be shown that there are no roots to
Eq. (46) in the i.h.p. (lower half w-plane). To this end, we multipi

, *
this equation by w Qm and integrate over & to obtain



dsw 2 o m2
, f 2 m, i G, .2 \ 19y 21
br cpds BY-pl — = —=xl2 S AR
IO | 2.2, n =y B 1 .
g BAd Y, (ch)

vola M) 3]%=a @) =

whereir we only keep termc wihicn contain components of the conductivity
tensor in the integrals over the lines since tnese &@ve tne dominant

b v

D
erms. Also it has been assumed that at tne end poinis 2, or i
‘ SC

venisn. Now the number of roots in the 1.n.p. wiich sctisfy Zq. (64)

wiil be equal to the number of times Q(w) encircies tue origin as w

axas on valuze which bound the l.ii.p. Assuming that fi 1s a opounded
funciion of w we see that as w ~ © the last term in Eq.(64) vanishes and
the imaginary part of Q is positive. In addition, as is casily seen irom
(63), in the © = O limit the last term on the l.h.s. of Eq.(64) vanishes
and again @ is in the upper half plane. This latter result is independent
of “he detaiied form of the distribution funciion in the radiation oelt
depending oniy upon the necessity taat the density be finite, viz. Ilue

am
integral J[. ——-does not diverge at & = 0. Finall.y, Wwe are abie To

extract the sufficient, but not necessary, condition for stabilility

m2§ /L S = ds> w Im(.???) (0))

Tor alil rn and o real. Tais is nothing but tie condition that Ip
H
never vanishes on the real o exis for ali o, If Eq. (60) is incor-

porated we have, since the resonant Irequencics ére so welil separatved,

o

>

Heal

H

o
ea i S

-
L

i

o (i i b bl

Bl
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or

n S + Jr. b
LI n s Lfi 7 f3me f ) (66)
T “n |eef ’ n ke Ry ©

)

i

i 3 [(i-r./- 3 = o
4/; EJB;-RE/rE)(b-j RE/rE)}M
after common fazcitors uLave been removed.

Consider first the contribution from the uigh enerygy specics; we aave

for tue parameters listed in Eq. (60) witn n, =1

0.2 nignt

Hence we see tnat the aight time values oi the parameters in tiae iouo-

spuere tre on the vorder, for high lines of violating our overiy pessi-
mistic stability ciiteria. Neediess tc sa, tne fact that for 1'1L.,~.‘.,]_OLr
tne condtribution Trom the low energy specics violates our stabiiity

eriteria.
Yo obvain furtihier information about tie presence and magnitude of tie
wnen the stability criteria 13 vioiated we resort to @

fied I

LTOWT vinmes
N
L%

iocel treatment of BEq. (46), an approximation that is well or

usti

il m modes.

IT we nov define tue quantities



2 b
g=(f)dSB/7/ (l+—1.(--bol
J
3 L
&, = dsB-S&/U(1+-:—mcl)
h = -d—sé(l+%—101)
B
L 2 92
k—g dSBaa B

we can rewrite Eq. (46) in the form

( 2 2
bor- 2 i g g
] E 9 2 a g /
(g —=—= +|mk - m"h - -2 = =4 ‘r)}
(MQBreL EéEaagﬁmE
E
where
1%
Kxx™ " 2g
and
r2
2 ..M 3 TE 3
.0 rEBEBr MarE

Incorporating Eq. (60) we now have

o
T 5° 1 s
[6-2'5—2"6*%((%)} ? %
. M arE

where

0,

(67)
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16 1-R T 16 E 8 L3R /T Mo
X [(I-RE/rE)(h-.%RE/rE)]'3/2, . (68a)
and
8nN_ M L-3R_/r
g =M/ 1R /r (2-R/r) + —= E_E (68b)

lwry / 1-RE/rF'

In the above equations we have replaced r by RE since relative to the

1,2
values of ro in the Van Allen belt the errors so encountered are insig-
nificant. Note that the minimum value of the term is the .first square
bracket in m?-l.

With the restriction to a local treatment the defining equation

for the eigenvalues is

D (rpme) = (G+]) =0 (69)

The above equation has been multiplied by o for convenience. Aiso in
Eq. (69) we keep only those terms in G wiiich come from the conductivity
tensor in the ionosphere, since in the averageover lines of force those
terms dominate. Here too in both limits @ = «© and w - O D is in the
second quadrant and once again we have essentisclily the sufficilent
stability criteria of Bq. (65). In tue event thot tnis condition be
vioiated (tne soiutions to the cbove equution must occur in pairs),a
necessary and sufficient condition for instobiiity is that 3¢ D(m,w) be

of opvwosite signs for any pair of solubions to the equnlity.
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In general, D(m,w) is proportional to

J % 3
il /1 b gl % . fm |8
2 faenyr L b fB) g LY
S jﬁx-f;ﬁ Rg | By xgdfle

| 1 _ .
+2—££L/.“3RE/1”)(1 Ry/zg)| I‘(%Tll %135& (5 3RE/rE)3/
(70)
In arriving at Eq. (70) we have utilized Egs. (60) and (68). Note tnat
for convenience we have replaced np(43) by its minimum value, an approxi-
mation that will underestimate the growth rate. It is of interest to

record the integral in Eq. (70) in terms of the dispersion integral of

(Fried and Conte)
e. L , - - -
1.3 LJ J ]
Z '-g| 25 c,H[l /iy 2 (./;'H)]+ [51 % WEy) (72)
:

At this point it is convenient to sketeh, in Fig. 2, the benavior at the

above expression, Eq. (T1), for the following range of parameters

If we assume the ratio of the temperatures of the high energy species
is of the order of unity then the plot of the real part for £ << -1 is
analogous to the mirror image of the plot for £ >> 1. If tie ratio is
much greater than one then the sketch of thne real part for [§|>> 1 should
be inverted through the origin.

As seen from the graph, for the present parameters, the condition for

instability, namely, that the ReD be of opposite signs for the pair of



30

frequencies at wiaich Im D = O is easily satisfied by tne low energy corn-
tribution and might possibly occur for the high energy contribvution with
tiae night time ionospheric parameters. Rather than analize our stebility
criteria in more detail for this latter case we directly solve for the
growth. If we take the assymptotic form of the integrals we obtain for

4 "
large r,/R;

3/2
P _ a(_z [1,% 1
HOO Ry m rg 8m?)
g 2/3
whiich is velid provided EE > 3m . If in order to find tne unstabie

root it is necessary to use the convergent expansion the growtn time
will be of no significance since it will be long compared to the drift
time of the energetic particles. Thus it might be conjectured that the
nignt time stebility criteria determine the belt parameters for the
energetic particles.

Returning now to the contribution from the low energy species we see
that in general our criteria for instability is satisfied twice leading
to two unstabis roots. By taking the asymptotic and convergent approxi-

mation respectively to the integral in Eq. (70) we obtain

1.2°E
InF, ~ - = 105 =— day (X 40 nignt) (722)
and ——
Y-
-4 RE\
10 2 1o ,
Im & ~ - = ;E) m- day (X o) nignt) (72v)
/

In arriving ot the above results we have neglected the real part of G
compared to the imaginary part which is valid provided we treat the

guentity 1 - R?/TE ~ 1. Note that this assumption was implicit in our
e




treatment of integrals over ionospneric paresmeters. Hence we have for

the growth time, T from Eq. (72a),

4

-2
T7 = TD 10

b |
SR L

where TD is the time it takes a2 high energy proton to drift around tne
earth. Consequently, the instabilities associated with the low energy
species do not violate the third adiabatic invariant of the energetic
particies.

In conclusion the following remarks are in order. The calculation is
in the B = O local approximation. Our restriction to cyiindrical sym-
metry, a condition violated by the asymmetry of the solar wind, restricts
our attention to larger m-modes. 1In addition our assumption regarding the
independence of ionospheric parameters upon polar angle is an approxima-
tion in the same view as that of the previous assumption. Our choice of
separable dependence upon pitch angle and energy of the distrivution
function for the energetic particles is not completely consistent with
the present data. TFortunately, the results do not appear to be sensitive
to the particular form of the high energy distribution. Inasmucnh as the
data is still in a state of flux, it is obvious that & stability analysis
based on the developed theory can be at best an order of magnitude resulit.

Keeping in mind the aforementioned restrictions our results can be
sumnarized as foliows: If we assume that most of the energy of tae velt
resides in the energetic protons, and if we look at disturbances occurring
fast enough to violate the third adiabatic invariant of these energetic
protons, then this dispersion formula essentially just balances resistive

ionospheric currents against the E x B and vB driving currents of only
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the belt's energetic components. The higher the conductivity of the
ionosphere, the harder it is to maintain the driving electric fields
whichh could give an instability. A very high conductivity would prevent
harmful interchanges (see Eq. 66). It appears that the electron density
which exists in the ionosphere in the daytime is more than adequate to
make the energetic component stable against interchanges. On the other
hand, the nighttime ionospneric density is lower, and it appears that
this lower nighttime ionospneric density might place the belt's energetic
component close to marginal stability. This suggests that a simpie
electrostatic fiute instability may play some role in limiting the

energy content of tne belt.
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APPENDIX
In this appendix we demonstrate that the effect of a parallel electric
. . . - . 3¢
field is negligible thus confirming the approximation "B = Q. First,
ds
we remark that Qm can only be dependent upon s in the ionosphere since
in the belt proper the conductivity along the lines is extremely large.
Tne second point to note is that although the spatial derivatives of the
components of the conductivity tensor are inversely proportionai to their
widths, when averaged over a line of force there occurs a cancellation
with the result that the derivatives are inversely proporiional to the
radial dimensions (see for example Eq. (68b)). Consequently, if 2
varies along the line in the region where the conductivity tensor is
peaked, in general the cancellation will not occur and it would be
expected that these terms contain the most significant effects of the

presence of a parallel electric field. To estimate the effect we solve

by iteration; if we write
? (a,s) = i (@) + ot (a,8) | (a-1)
m"? n m 7’

vnere & is assumed small and ég is the solution to Eq. (46) in the

1
m
absence of a parallel electric field. If Eq. (31) is recalled we have

with Eq. (46) the equation for é;

1 0
Gl 3¢
3 m 2 2 2 m 2 /3 . 0
Ss O’O 55 = - B .'C\-;/b O'l S;" + mB (5‘; 102) @m (A-E)

where the r.h.s. of Eq. . (A-2) contain the terms previously mentioned.

If we now write

l-r/rE =

. 2 i
- 7= 2E§}7?E 37 (A3)

euifusli

)
o
s



with r and Th independent variables we can, if we utilize

2

d M 3, 'E 3

ST T asr T WM S+ (a-4)

aa r B2 or M alE

write
P

e L For (A-5)
oa ;-r/r L- 3r/r7 8s

which when substituted into Eq. (A-2) yields after integrating once over

193]

1 % 0o .
W b 202 Cn 12 0 (1-6)
os ERE 1 - RE/rd 9 a Bco m

To arrive at the above result we have utilized the following properties:

-
=l
D

! o e . . :
— = 0 in the belt, 9,59, = 0 in the belt (see discussion preceding
£

axc]

O!

Q)

(60)), in all terms which are genile functions of r we have set

rE=3E an epproximation consistent with the strongly peaked nature of o,
ES

and ¢,. If Eq. (A-6) is now inserted back into the appropriate terms of

o
(46) we obtain, after an integration by parts, in addition to the

-

i.1.8. of Eq. (46) the terms

2
bn 1 o0 ¥ om 1 n® %,
w *-RE rE 1E50 aa R; EEb m 4R§ 100 m
)
2 {
- Ig B s
0 (]

If Eq. (46) is now compared with Eq. (A-7) it is immediately obvious
o, ,0

= is small, the contribution from the paraliel electric
¢ S5
field is insignificant. For the parameters of the ionosphere T at the
0

that, provided
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o
is on the order of 107> while al at the peak of o, is on the
o

order of 10'3; hence the approximation that Qm be constant along a line

peak of 95

of force is a valid one.
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Fig. 1 -- Complex w-Plane.
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ABSTRACT
WA\
A quasilinear diffusion equation for particles interacting with
transverse waves propagating along a homogeneous magnetic field is
constructed to study the effect of resonant magnetic-moment-violating

interactions. It appears that quite anisotropic flat-helix particle

distributions can result from such interactions. (%ﬁ;\vsb



INTRODUCTION

It has been suggested that resonant particle-wave interactions in
which the magnetic moment of the particle is violated, may be of importance
in determining the loss of high energy particles from the radiation belts.
Wentzel {1961] and Dragt [1961] have studied the resonant scattering of
radiation belt protons by hydromagnetic waves, and have concluded that
in some regions considerable scattering of the high energy protons could
occur in times of the order of a day. Similiarly, the effect of whistlers
on electrons has been analyzed by Dungey[l963] and by Cornwall[1964] ,
and they also conclude that the resonant interaction may be an important
loss mechanism. The interaction has also been suggested as an acceleration
mechanism: Dessler [1962] , for instance, proposed that Jovian whistlers
might be responsible for the flat-helix relativistic electrons which exist in
Jupiter's radiation belt if Jupiter's decimeter radiation is due to synchrotron
radiation from electrons trapped in a dipole field [Chang and Davis (1962)}.
Because of these various possibilities it is of interest to study in more
detail the consequences of the resonant magnetic-moment-violating particle -
wave interaction. Accordingly, in the following we use the quasilinear
relativistic collisionless Boltzmann equation to study the resulting diffusion
in energy and helix-angle. The results may be of significance for electron-
whistler interactions and for proton-hydrofnagnetic wave interactions, as
it is found that quite anisotropic distributions of the high energy particles

may result. 2



QUASILINEAR DIFFUSION EQUATION

The relativistic collisionless Boltzmann equation will be used here
to describe the particle distribution which results when electromagnetic
. i,= = 33

waves propagate through a plasma. Denoting by F (r,p,t) drdp the

. 4 .th . . " . > =
number of particles of the i~ species in the position interval dr at r and
the momentum interval df at p at time t, we have
i

.vF =0 . (1)
P

3F | cp. vF re [_\ B xB }
2 2 21 22 2
ot (m;c™p A (m e 4p )5

Here a;, t) and—B-\( ;, t) are the electric and magnetic fields, ei and mi are
the charge and mass of the ith-species particle, and c is the speed of light.

We wish to solve this equation in the quasilinear approximation
developed by Drummond and Pin.es (1962) and by Vedenov, Velikhov and
Sagdeev (1962) for treating the Vlasov equation. In this approximation
some results of the solution to the linearized form of Eq. (l) are needed;
so we shall begin by outlining the linear solution, referring for a more

complete description to Chang (1963).



(1) Linearized equations

Writing Fl(;, p,t) =F:( p)+Fll(;, pst), where the equilibrium dis-
tribution density F:(f;) is taken independent of position and Fi(_;, f;, t) is

considered to be a small perturbation, the zero and first-order equations

are
— i
epXs .v F
i o po._ 2)
22 2%
(mic +p
and
3F cp. vF. PXB .y FI PxB
L te °o P =-e[‘€+ : l]vF1(3)
2 22 2% i 22 : :
ot (m.c +p )% ! (mic +tp )2 ! (mic +p )= P ©

In these equations, 2(T,t) has been considered a first-order quantity, and

the magnetic field B(T, t) has been set equal to a large constant field :éo

plus a small perturbation El(r, t). The equation for the Fourier components

{ fi1 (k, pyw), Hk, w),B(k w)}=

L
1 3 L = | N —_ . —
(Z_L dr dt exp ["1(k. r+wt)] {Fl(r: P t), 6(1‘, t) ,Bl(r’ t)} (4)
-L
x=Z3 3-17%

which corresponds to Eq. (3) is



— - i —_—
- . PX B . vf £ PXB .
ilw+ CZP %Jf+e -——-——P—%-=-e E+ 121].VF1
(mc +p) (mc+p) (mic-i—p)_g—J p o

A dispersion formula is obtained from Eq. (5) by using Maxwell's equations

to replace B by

1

(6)

and by forming the current fluctuation

fwB =5 E=) e [ab —Rr—r & Fw) (7)

— (mic +p )°

where the sum is over the different species. This expression combined

with Maxwell's equations gives

; 4w
C

2
'kx(kxE)+i"7E - c.E = 0 (8)

(¢]

from which the dispersion formula follows as

wz 2 4nw
* _k -
|kakﬁ+ CZ 60(43 i~ ozBl (9)

—_— —_—

— -—
If 50 is taken to lie along the z-axis, Bo= /Boi ; k is taken to lie
V4

in the x-z plane, k=k Tz+k 1;and 3 is expressed in spherical coordinates
L Iz



m ® i
- 3. 5 ; O (n)
g = -ZZne, dpd6 P _sin ) T - (10)
aﬁ i 2 2+ 2)% yan +
3 (m, c+p n=-e 02,
oo
where
i an i 'n i n 2
. . . a ] iD . .
iA sin@ oy ) A sinB . Jan) iD sin@ 5 Jn)
i i i
. ) . 2 .
O'taF| -A'sing|—J J’) iA'sing(J ) -D'singJ J')
af bi nn n n n
iA'cosg|— J Acosg(J J') iD cos@(J )
bi n nn n
and
1 : 2.1
= - +
a e B [(mic +p )*wtkcp cose]
i Fo
k pc
= - _L__ 3
b e B sin@
i’o
1
22 i 2 2=
: (m-c“+p°) BF; (m c“+p") ke | ?F
A'(p, 0) = ; + Sy (.
(ps 6) 'Bo sin@ 3 p'Bo cose+bow 36



22 2% i % i

(m.c +p ) 3F ! (m,2 c2+p2) ne. BFI

D.(p,8) = ————— cosf —2- = sin@- = 2
i Bo ¥ p)B0 wp sinB| 36

. . th - .
In this expression Jn and JI; denote the n  order Bessel function and its
derivative, and the argument of the Bessel functions isthe quantity b .
From causality the residues at the singularities n+a,i= 0 are to be

evaluated by considering [Landau (1949)]
w=1im (w~ iv) as v=0, v>0

In the following, we shall restrict our attention to propagation along

- the magnetic field (k = 0), in which case the dispersion formula simplifies
i

considerably. Here the conductivity tensor reduces to a convenient closed

expression, and moreover the dispersion formula separates into three

~

S

factors corresponding to two circularly polarized transverse modes and
one longitudinal mode. Our present interest is in the transverse modes!
E and B1 are perpendicular to B, and Egs. (9) and (10) give

o
4w 4w

2 2,2
- = - +
kII (w /c) i— c“ - 9,

m 3 i 2
® p a.Alsin 6
o= Ziﬂe, dpde (11)
- 2 2 2
5 t (m, c +p %(l-a, )
Pe) 1 1
To®
- . 3Ai . Ze
sin
"12:'}: ei“jdpdepzz 2 L 73
i (m.c +p )% (1-a,)
(o) 1 1
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where a, and Ai are as defined in Eq. (10) with k; 0, and where the plus

and minus signs correspond to the oppositely circularly polarized modes.
We are interested in using Eq. (11) to describe whistlers and Alfve/n

waves in the radiation belts. There we envisage a plasma most of which

is thermal, but which also contains a relatively small density of relativistic

particles. The real part of the index of refraction may then be taken to be

determined essentially by the thermal component. If temperature effects

are ignored completely, then Eq. (11) gives for the refractive index

N = ]k“c/w\

(i) ] -3 o]

-2/, ™ 2 -+ - +
=1_(w)61+——e}[w-ww + w(w -w)] » (12)
p i m, cc c c
where the top sign applies to the extraordinary wave (i. e. to the wave in
which the electric and magnetic vectors rotate in the same sense as the
positive ions gyrate about the magnetic field lines), and the lower sign

- 2 1
applies to the oppositely polarized ordinary wave. Here wp = (4mne /me)_é

+ 2, 3 . .

and wp = (4mne /mI) are the electron and ion plasma frequencies,

+

wc = e /Bo/m c and wc =eh /mIc are the (non-relativistic) electron and
e o

ion gyration frequencies, n is the electron density, e is the magnitude of

the electron charge, and we have taken the ions to be protons. In the

+ -
ordinary whistler mode when w << w< w, Eq. (12) gives



N° & 22— . (13)

. +
For the Alfven wave occurring when w << w, Eq. (12) gives

5 (w-)2
+

w w
c cC

-2, - +
and when (wp) /wcwc >> 1, this becomes

4tnm_c

(14)

Although the details of the distribution functions have been ignored
in determing Eq. (12) for the real 'part of the dispersion relation, they
cannot be ignored in determining the Landau damping. For the ordinary
whistler mode where the ions are ignored, for instance, the damping
results from only those electrons which resonate with the wave. From
Eq. (11) the imaginary part of w for this whistler is determined by the

4 . 4w

[ . . .
imaginary part of [-— i = C o 12]: a first iterate solution for

hoc
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J=Im wresults on ignoring¥ inside this bracketed expression, in which
. . . . €
case the imaginary contribution comes only from the poles 1l-a =0.

Evaluating these residues according to the Landau (1949) prescription, we

find
. g N 3 2
Im —14ﬁw_u_i4nw 012 = 4w e I (p..p.)
C C 2. l 2.
¢k |
I
where
P,
2 oF (mzc + )%
=] 4 22 24 P
Ip, pZ) PP sin T (mec +p )‘sim’;‘a ° 4 € cosh
(m ¢ +p )é— P p
k ¢ JF
+ A _©°
w 6
1 -
wm 2\ w
cos §= - — 1+(p) - =<
k m cC w
il €

and P and p, are the smallest and largest p, respectively, for which
jcos 6| < 1. Since the rate at which the wave changes its energy is seen
to depend so strongly on the details of the distribution function for the
resonating particles, it is expected that the distribution of resonant
particles might be strongly effected by the wave. To see this effect, it

is necessary to go beyond the linearized treatment.
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(2) Quasilinear diffusion equation

In the quasilinear treatment of the Vlasov equation developed by
Drummond and Pines (1962) and by Vedenov, Velikhov and Sagdeev (1962),
a diffusion-like equation is obtained for the k=0 Fourier component by
writing the k=0 convolution of the acceleration term through second order
in the perturbation field. Thus, taking the %=0 Fourier transform of Eq. (1),
identifying the k=0 transform of Fi(?, t) with Fio, and \;sing Eq. (2) for the

k=0 waves under study, we have the quasilinear diffusion equation
L

PXBl(k": W )

F , .
__© = - It 1 = 7
—24+e ) [Ek,w )+ . f(-k,w, )=0. (16)
ot 124[ i O’k" (m2,02+p2)% ] pl y- |

i

Here, fll (-k » wk ) is the solution of Eq. (5) for k=-k _i‘zand w=wk; and the
B - it -
il i

subscript k on O‘i( denotes the solution w= w(k ) of the dispersion
I

i
Il
relation of Eq. (11). The convolution which forms the second term of

Eq. (16) contains no oscillatory time factor, since for E(k , mk) and
]

- I

E(-k , wk ) to describe the same (real) wave we must have
n-

1l

Rfw, V= -Me ) (17)
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Writing
_15\=pcos¢7i‘+p sin T+p?,
L X 4 ¢Y Iz

T+EI

E=E

Eq. (5) for the fll(k » &) induced by the transverse waves with k =0 may be
i .

L
written
i ‘ k
of i 22 2.1 p X © i
1 B (mc"+p )% |w+ —”—2”'7——2—1 fl=
° °i % ! ‘ (miC +p)*
3
2
(n1,202+ p) |oF k c oF oF
i o ZJl T |P ° . ) 2 [E cos¢
B d 2 ) 3 d x
o) p_L (mlc +p )Qw R p“ il pJ_
+ E sin } . : (5a)
Yy
This has the solution periodic in q):
Aliai ;
f=[E +E si ] +Es'4)-Ec ]A 18
! Xcos(i) Ysm(') — [ LSin . os({D 5 (18)
Ehat

l-a,
1

where A1 and a, are as defined in Eq. (10) and which in terms of p and p”are
1
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2 2 23 - i
(m- c“+p") [3F " k c 3F 3F
1 (o] (o] o]
P - P (19)

2 2 2% 3 d
(o) n (mic +p )-gw L p” i p_,_

1

i po22 22

a = - i(m,c +p) wtk p c]
i% - ! ‘ o

In these coordinates,

pXB ,
P l(k" W )q

= 1
E(k",uuk ) + . fol(-k

22, 2 by )=
I (m.c +p ) U

Eq)(k,w ) |1+ U _} 1 - ('k“’w-k)
22 2.1 ]

wk(mic +p )% p.L > ¢

I

|
J

kaE(k)Cf()
f ("‘k’w )
Looe " al ;%

22 2 I
T '*P)% op

s (20)

where

Eg=- Exsmd) +Eycos¢ : (21)
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Using Eq. (20) and Eq. (18) for fl’ we may then write Eq. (16) as
kC - 1
i 'A'ia, BE i JE,]
SPANCTITY) Rtk T b S )
— = e, ! 2% |p L 2, 3¢ 230 |
dt . w, (mc +p) pL(l-a) l-a, Jx
I 1 ‘“LL”
i . -
pkec 3 A'ia i !
d A
+E(k,w, ) L 1) E -2 E
Kk 2 2.3 153 ? 2
Ly (m.c +p) Ppoleay 2Py leal ML
I TR S
I
pkc Ala i X
> [a
+E(k,w ) 1+ E-2—[Z2_ | E
D Tk 22 2 2 3 2
RS ( O‘k(mc@)% ap (1_3_ L 2P (1) (P }
-k, w
ok
I
(22)

where the subscripts (-k , w
i

of the enclosed quantities.

3 E

—?q;k =E(PandT ——E ,

this may be rewritten as
¢ :

. ) on the square brackets denote the arguments
I |
Noting that

3E,
(23)
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i
i kc Aia i
oF i 1 i A
—°=-e,§ Eglkpq) |1+ 22 2.3 | p z [Bof T2 B
ot oy (meT+p) AR EEN 1-a

1
I -k, w
-k
I
Pk c Ai' i \
la
o) i o) A
+E (k,w, ) |[- L E - E
2 2 2 !
L k|| w (m.c2+p) Bp" l-a, L ap" l-a.zr ¢
k i i 1/ Tk
" - ’w
-k
It
pkec 5 /Aiiai 5 Ai \
+E(k ,w ) (1 + Il —\ E————)E
2 2 2 2
< | O-i(" w (m.02+p )% OP \1..5) L apJ_ l-a, (P
k i L 1 1 K . w
. (24)

For the circularly polarized modes of interest,

Ey(k", w, ) = :i:iEx(k”, « ) and Ey(-k", O?-k )=F iEx(-k", W, ) (25)

[ f Il Il

where the plus and minus signs refer to the extraordinary and ordinary

modes, respectively; so that writing

E(k,w )=E (26)
p. &

1
k kK  —°
oy I 2

Eq. (24) may be further simplified here to



i
JF . k i
_9_=¢i1_§ﬁ 4 L 1oz 2 fia
SNV | BRSNS 3 RSN e
-k
l
kc T
( Ll B 12 2 llAl g
g (m.c4p) k. w
fi -k
l
\
Pkc l |
+/1 + L E %2 (4 ’
k (m%2s 08 k' op |TFa, [
k miC P ) I i 1
-k, w./
If i -k”
Reintroducting spherical coordinates,
p =pcos@, p =psing,
1 L
Eq. (25) becomes
BFi
e k c foal
——C= 1 !E lz 0l d_ ilA151n6
ot 2 k 30 {1Fa,
I 22 2% i
9 (mic +p )*®sin@ -k, w

2
+cos 6 o

iat
1Fa.
1

sin@

psin @ 5_9— cosB

16

(27)

(28)
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Here the top signs apply to the extraordinary mode and the bottom signs
apply to the ordinary mode.
To determine the rate at which energy is pumped into the particles

form the quantity

E d /22 24 2 i 3 _
—d + F =— K
51 pd9d(|) Pc tm.c p sin e 0=31

i

2 2 2 2 24 3 2 |iA
= i . 2
ZT- me. |Ek ] dpdfsin §/p ¢ +m c 5P P 1=Fai (29)
I -k, w
-k
I
which upon integration by parts becomes
32 2 i
9 P c sin 6 iA
PR "E dpd6 =5 | 152 - 30)
P c +mlc 1
-k sy
I
I
While from Eq. (11) we have
2 3
2w P A sin 9 1
- == . 31
k” > Z%w dpd6 > 4%1:&a (31)
c (p c +m c

Recall that in Eq. (30) the quantity in the square bracket is evaluated

at -k whereas the analagous terms in Eq. (31) are evaluated at +k
I¥ il

interchanging the significance of # thus Eq. (30) can be written
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A c T I
[
1
- ZT L dx {(B (x) 2+ E(x)1 ) . (32)

Now since only the real part of the r.h.s. of Eq. (29) contributes it is

easily seen that for w‘\'wi only the ions are concerned while for

u"lc W ow u,i it is the electrons since in the formeronly extraordinary

waves are considered whereas in the latter only the ordinary waves

contribute. Hence depending upon the range of frequency there is energy

transferred from the wave to the ions or the electrons as the case may be.
Since Ai contains first derivatives of Fi), Eq. (26) has the form

of a diffusion equation. In the integral defining the diffusion coefficient,

the integrand becomes very large for the resonant particles at the

singularity 1 ¥ai =0. At the singularity, (1 ¥ai)-l is to be evaluated

according to the Landau prescription so that at the singularity (1 :Fai)-

behaves like the delta-function imd(1 ¥ ai), where the upper sign corresponds

to the ordinary mode and describes the resonant interaction of electrons

with Whistler's while the lower sign of ions is analogously defined for the

Alfveh wave ion interaction. Because of the singular nature of (1 ?ai)_l, we

shall simply replace (1 iai)_l in Eq. (26) by i76(1 * ai): this corresponds

to looking at the diffusion resulting from resonant interactions. The particle

motion resulting from nonreésonant interactions in the collisionless Boltzmann



19

equation is not only much smaller, but also does not represent true diffusion,
This has been shown by applying the Laplace transform technique to the
equation in an initial-value problem [ Drummond and Pines (1962) ], and
alternatively by constructing a Fokker-Planck-like equation to describe
the interaction of an ensemble of particles with a group of damped waves
Chang (1964),

The diffusion equation describing resonant interactions is,re-

L
placing the sum by an integral over k (Zk iy f dk”) ,

’*Fl e,L 2 k C a .
o i i i
=t— [ E_, L : n — [A'singé(1Fa )]
=t 4 ik 22 ¢ % 08 i
1 w, (mic +p )7sin @

2 l‘ .
icos 8 o |[sinf A16(

p sing E'él_cose 1¥a,) (33)

i sinei— (A'§ (1Fa.)]
P 1

where the quantities in the square brackets may be evaluated at (k, wk )
ff

i
since we have the relations of Eq. (17) and we useﬂuk for wk ignoring

I
terms of O{Im wk /’ﬂ’wk ). "

I i
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DISCUSSION

The nature of the solution to Eq. (27) are easily seen in the non-
relativistic limit. Since the energetic particles in the Van Allen belt are
only mildly relativistic, this is not too unreasonable a limit to consider.

Equation (27) then reduces to

i .
BFO :tz £ tEfJZ m.c aF;
: 12 |iesns -
3t &, ™ 51n9 36 sin@ § ( ai) 'P)O sinf 5P
1
rnic k c a]-?‘(l3
+ +A ] =
Y A=Y BEY
° o)
2 SF
m c
+ ¢cos 6 _a_ sin@ 1 i
osind 58 |cos6 dl¥a)) T/o sing —
m.c kcl BF:)
+ 4] _°
+ B cos@ Bwl 358
o o
fmic aFl

m.cC kc aFo
1 | _° .
+ p% cose+/Bo 35 (34)
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e b
For the modes of interest, w<< ! CO, so that with the delta function con-
m,
i :
dition, w may be ignored compared to k p /mi.
i

F
Moreover,regarding o2
3P
to be of the order of F/p, and noting that the ratio miw/k pcos@is given
Il
by the delta function condition to be of the order of w/(ei/Bo/m,c) <<1, we
1
shall also ignore energy changes associated with the 3 /3dp derivatives.

In that case, Eq. (34) may be further approximated:

i 2 T E ”z i
oF T, d. 4 ok sin 6 Fo L

o ~ 1 : —_ k_d.z_.__'/ A gé— 4-‘"— (35)
3t pmisnle 26 w, e&O cos

2 -
With W, = kﬁ and | Ek |7« k 0t(a spectrum suggested by lightning
g i ]

fl fi
for whistlers [Dungey (1963)] and by turbulence for Alfvén waves) the

quantity 4(2’ 5 | 2\
o '52 1

| B

o “"o

I k = cp cos @
[ p
2-2B- at 2p-2
is proportional to k B a, i e to(pcosB) P . The steady state

i

solution of Eq. (35) with this spectrum of waves is given by

oF ! (36)

°8 sine(cose)(x-'-zﬁ-3

corresponding to a very flat-helix spectrum when a+ 2p-3 is large.
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The time evolution of the solution to Eq (35) is easy to follow in the flat
helix approximation Thus, replacing sinfby 1 and cos @ by x= -;i -6,

Eq. (35) reads

i
°F, 2 [ot2p-32F (37)
d1T  loax l ox
where cl(p) contains the proportionality constants of W k‘3 and
5 o “\ I
lEk | "<k . Equation (37) is of the form
i [
i
o F 2
o 0 a d atl
= - g=— + — 3
— g3 (X F)+ = (x" F) (38)
ox
where
T = cl(p)t
a =qt 28 -4
g =a+2B8-3 : (39)

As a represent ative problem we examine the response of the system

to a source

F (x,t= 0) = G(p) 6(x-x_)

which leads to the solution
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Eq. (38) has the solution

l-g  g-2a-1
x 2 x 2

exp |- + X (40)

l1-a
2
1 (x x ) 2
q 2
T(a-1)
with
_|8-!
I PR R

when F is required to be finite at the origin and an absorbing boundary is
placed at x = = This solution, the time evolution of which has been
discussecd in detail elsewhere [ Parker (1961), Davis and Chang (1962) ‘],

may be adapted to the present problem by the use of images.

The ab0ve'equation (Eq. (40)) describes a time evOlution in
which the peak of the distribution moves toward x=0 (8 =3) while the
distribution itself tends to flatten in such a manner as to leak most of the

(6 =0); however these particles then find themselves

N E]

particles toward x =
in the loss cone and will be removed leading to a final distribution which

ks
tends to be peaked at x =0 (6 =E)-
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Now, since the distribution flattens in angle (except near 6= m/2)
at long times it is no longer correct to neglect the derivative with respect
to p. Thus rather than the steady state solution given by Eq. (39) we must

look for solutions of the full time independent equation Eq. (34). It is

interesting to note that one such equation which is independent of the

spectrum is obtained by setting

m.¢C c F m.c k ¢ oFo

o i
—— sinB —cosG+—u———~
8. d B B w26

1 1

3F k BFO
(o] O
= |m, sing — +— =0 . (42)
BO i 3p w4 30

The solution to Eq (42) is any general function of the solution to the

characteristic equation

4P - I sing . (43)

For the interaction of Alfvén waves with protons, Eq. (14) and the fact
that the particle and wave move in opposite directions for resonance from

the Doppler shift give

(44)
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when pcos@8 >0, so that in this case

I_
Fo— f(p + mivAlfvéncos 8) . (45)

O'Brien (1964) states that the energetic proton spectrum in the belt is
described by the empirical relation of McIlwain and Pizzella (1963)

-E /E
j(Ep)dE = constant e © °%dE i (46)

E_=(306%28) L (5220 2) v for LL2<L <8

where j(Ep) denotes the intensity of protons of energy E anil L is the
T, x
magnetic shell parameter. This suggests using f(x) e A in Eq. (45)
in which case
FI xexpl-c (pt+myv cose)2] (47)
o P 1'P i Alfven ’
i. e. a flat-helix distribution results. Similarily, for electrons,Eq. (13)

and the condition for a Doppler-shifted resonance give

k 2 (48)

so that in this case
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2 2 2
e 2 Zmec wc
F =fl{p + ————1Incos 6 . (49
o} 2
w
P
-c,x
If we take f(x) «<e this gives
e -V 2
F =(cos §) "exp (-c,p ), (50)
2 2 2
2m ¢c w ¢
y= e c 2
2
w
P

which suggest a very flat-helix distribution for the electrons which are
energetic enough to have Doppler -shifted resonances.

To get an idea of the representative times involved consider the
early time form of the diffusion equation Eq. (35) from which we extract

the diffusion coefficient

L 1" -t =————= =D
. 2 tB‘k" cpcos b (51)

writing

with
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L
_ 2w 2 _2rw 2 dx
T ) IR =T BTy
I
-L
we have
L
2 , 2
D= = sin 8 [p(x) f & (52)
2 2L
2p mc Ak
I Y

in arriving at this result we have assumed that the spectrum of waves was

a relatively flat function of wave number, k .
f

For the Whistler mode we have

2
w
1
Ak:ZAw p 1l

if A/T.J wCC

) /
while for Alfvén waves

To obtain an estimate of the order of the effect we assunie as

Dungey (1963)

f Bz(x) dz_x ~N (gamma)2

4
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where N is the fraction of time disturbance is present. Assume that there
are ten Whistlers per day and that on the average each electron sees the

wave ten times we have

N = 100 R 10'5
v
l
and
D=10" |—°— L
n 2

v

hence with v” ~ c the diffusion time is of the order of a day. Dungey and

Cornwall have pointed out that on replacing v, here by its resonance

I

condition v“ ~ wc/k , a rapid increase in D with increasing distance from

|
the earth is obtained.
To estimate the effects of Alfvén waves we assume that waves
are formed at the interface of the magnetosphere and the solar wind with
an average energy on the order of the geomagnetic energy at 10 earth
radii. To estimate the energy density of waves deposited deep into the
- 2 dw 2
magnetosphere we utilize the constancy of the energy flow |B | T 4TR

In order to account for the large fraction of waves which are reflected we

multiply the conserved quantity by some small efficiency factor (7). Hence

2 -7(R /2
at an arbitrary position in the belt we have ]Bk ] =10 ('1—0) n where
1
we assume VAlfvénN R3 72 then
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thus with Aw~ 1, vAlfven v and n ~ 10-3 we obtain at L = 1.5 a
diffusion time of the order of a day. Once again by replacing v by its
resonance relation we find a rapid increase of D with R a behavior
previously demonstrated by Dragt and Wentzel.

These results have time scales which have been obtained by
previous workers in references cited in the Introduction and are compar -
able to natural times in the belt. Thus, it appears that resonant inter-
actions in which the magnetic moment adiabatic invariant is violated may
provide a means of obtaining energetic anisotropic particle distributions.

A more detailed treatment of the quasilinear diffusion equation in which
longitudinal as well as transverse fields are present and in which arbitrary

directions of wave propagation are included, would seem justified as more

observational data on the spectrum of waves become available.
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RFMARKS ON AN FXACT SOLUTION OF A UNIVERSAL INSTABILITY

To determine the growth rates and the stability critefia of the modes
which are described by the term "universal instability" it has been previously
necessary to resort to a locwl treatment relying on a WKB calculation to Justify
the local resultsl"h. We report herein on an exact solution to the governing
equations in the drift approximutionl which verifies the local or WKB treat-
ment when the usual bounds are placed on the density gradient. We maintain

a finite Debye length to produce, in the local limit, the "universal instability"
3,k

in the drift approximation .

We have in mind an unperturbed density which approaches a constant value
at x = -» and a constant and smaller value at x = +®; such behavior can be

described by

X
= - = < T < 1.
n = ny|l - Ttanh Qk)’ 0< TN<1 (1)

The perturbed potential satisfies the equation

1 on
v - - - Fmn ax) ps (2)

0D
where

ot + iky + ik”z
g = p(x)e ) k, >k (3)
1 Il
and Q =' EE‘ where B is constant and in the z-direction. In deriving Eg. (2)
we have assumed E— J201 << O whereas E— /31; >> 1, where ./ é; / §%4 is
It I b

the thermal velocity of the electrons (ions). Also in Eq. (2) Ay is the

electron Debye length at x = 0. If Eg. (1) is substituted into Eg. (2) we
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obtain
2 kv
I L __c 2 x - X
5=k |1-1g na)( — sech” Z+ + |1 - Ttanh 2)\) ?
ox I
= Q(x)p (4)

wherein we neglect kr compared with kL and

ST -t L (5)
¢ 2a0n ex) . 200 2x T
x=0
With the substitution
x/A 8 t
g = =€ / ) ¢= 5 (1"§) W(g) (6)
we obtain the equation
y 12 hkj_rc i
(1-8)Ey" +[25+1 - (25+1+t)§]¢' +l =1 (2% - 1 - = . /m- (2s+1)t|y = O
AD w k”
(1)
if s and t satisfy the following relations
o . » 1i/2
s =2 KA+ [1-1 iL»/ﬁT)(l -
LD k
D I A
1 {_l Hkvc N \ éﬂl/g
t=§—lﬂ+m l-lﬂ”@(g) (8)

The solution to Eq. (7) is a hypergeometric function§ Hence collecting all

terms we have

. b .
g = (-0° M (14 Y B(a_o e (9)



where
-

1/2
a, = s+t i—D Lki\% + (1 - iﬁﬁ)(l + n)]

>

¢ = 25+l . ' (10)

It is immediately obvious i1aat @ is well behaved as x = +», whereas as

X = -® ywye have

1
SRR - IO SR

+ * e : (11)
F(a_)F(c-a+) J

Hence, for the solution to be well behaved in this 1imit the first expression

in the curly bracket must vanish leading to the equation

2 Ly
c

1(%
+—-—

I in

2
K|

vhich is just the condition that the argument of the gamma function in the

~

i/2
Af) + (.1 - i ‘;{’—”—A_/ﬁa‘)(l - n)} = |n+ =

denominator be zerc or a negative integer.
To see how this compares with the usual WKB treatment we evaluate the

phase integral conditiong’3

-Q dx:

n (13)
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where the endpoints ol the Integrand occur at Q = 0. We then have

in + % M= -

g

— g% Lo M [f_ +(1-11—,;/"‘)(

D

(1k)

. ~X/A . .
Yith € = -e / < 0 the above integral is of a standard form and can easily

be evaluated to yield

[hkv (1 - 1*«/_")}1/2- [er +11-14 k“ Jri?)(l + n]l/2 -

M

— ©n=01,2... (15)

, 1/2
[kfxf) + (1 - i ‘f{’-‘? «/Ta')(l - Tl)jl = (n +%

The local result obtains by simultaneously solving Q = g% = 0, which is

equivalent to Eq. (15) with the right hand side equal to zero. We see that
A

the WKB and exact solution differ only by the term-%(-xg) occurring in the

first square root of Eg. (12) whereas the local theory differs by a térm of

order AD/A.

It should be remarked that n is limited in size since inherent in

the drift approximation is the necessity that the effective wavelength

in the direction of the density gradient be large compared with the ion gyro
radius. Indeed, since AD/A << 1, to produce sizeable corrections to the
local theory n must be so large as to violate our basic assumption.
Consequently we may conclude that, provided the Debye length and the
ion gyro radius are small compared with A, the distance in which the density

varies, the local, WKB and exact solution are equivalent.
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PART 5

During the period November 16, 1964 to March 15, 1965, the follow-
ing activities were pursued by program personnel:

Dr. L. B. Pearlstein

Delivered a colloquium at Goddard Air Force Base on
November 24,

Presented a seminar at the University of California at
San Diego on March 131.

Dr. D. B. Chang

Was a member of the Fellowship Selection Committee for the
Danforth Foundation, St. Louis, Missouri, December 16 through 20.
Attended the DASA Trapped Radiation Meeting at Boulder,
Colorado, December 9 through 11, and presented a paper.
Attended the American Geophysical Union Meeting at Seattle,
Washington, December 28 through January 1.
Drs. Pearlstein and Chang attended the meeting on

collisionless shocks at Ames Laboratory, Palo Alto, March 1 through 3.

During the period of this report, no 'reportable items" as defined

by the article "Reporting of New Technology" evolved.



